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Abstract 
 
NASA is proposing to use large numbers of cooperating 
spacecraft in future exploration missions.  These swarms 
will exhibit complex behaviors and interactions that can 
result in unintended emergent properties.  Verifying the 
proper behavior of these new types of missions will be 
critical to their success. This paper gives the results of 
research into the use of formal methods techniques for 
verification of a large number of cooperating agents. 
Multiple formal methods were evaluated to determine 
their effectiveness in assuring the behavior of swarms of 
spacecraft. The NASA ANTS mission was used as an 
example of swarm intelligence against which to apply the 
formal methods.  This paper discusses the evaluation of 
these formal methods, provides a partial specification of 
ANTS using four selected methods, and an outline of an 
integrated formal method for verifying future NASA 
swarm missions. 
 
Key Words:  Verification, formal methods, swarms, 
autonomy, emergent behavior, spacecraft. 
 
1. Introduction 
Intelligent swarms of autonomous spacecraft are being 
proposed for missions that have complex behaviors and 
interactions. Bonabeau et al. [1] who studied self-
organization in social insects state that “complex 
collective behaviors may emerge from interactions among 
individuals that exhibit simple behaviors” and describe 
emergent behavior as “a set of dynamical mechanisms 
whereby structures appear at the global level of a system 
from interactions among its lower-level components.”  
The Autonomous Nano Technology Swarm (ANTS) 
mission is an example of one of the types of swarm 
missions NASA is considering.  Since ANTS and other 
similar missions will consist of autonomous spacecraft 
that may be out of contact with the Earth for extended 
periods of time, and have low communications 
bandwidths due to weight constraints, it will be difficult 
for ground controllers on Earth to observe improper 
behavior and correct any errors after launch.   

 

Swarm technologies, whereby federated systems of 
spacecraft or rovers (of varying degrees of collective 
intelligence) mimic the societal behaviors of swarms, 
colonies, or flocks in nature (such as of bees, ants, or 
geese) appear to offer great potential, and are becoming a 
major focus for future NASA missions.  These types of 
missions provide greater flexibility and the opportunity to 
gather more science data than traditional single vehicle 
missions [4].  The emergent and autonomic properties of 
these missions make them powerful, but at the same time 
more difficult to design and verify.  These missions are 
also more complex than previous types of missions, and 
neither NASA nor anyone else has much experience in 
developing, verifying, and validating them. 

Swarm-based systems will naturally bear all the 
hallmarks of a complex system – perhaps millions of lines 
of code, complex hardware-software interactions, real-
time behavior, continual updates from environmental 
sensors, and a domain that is not fully understood.  More 
importantly, such a system can never be exhaustively 
tested.  With the large number of parallel and distributed 
swarm members, the state space is extremely large and it 
is impossible to test every path through the state space.   

One of the highest possible levels of assurance comes 
from formal methods [5].  Once written, a formal 
specification can be used to prove properties of a system 
(e.g., the underlying system will go from one state to 
another, or not into a specific state) and check for 
particular types of errors (e.g., race or livelock 
conditions).  A formal specification can also be used as 
input to a model checker for further validation. 

The authors have investigated a collection of formal 
methods techniques for verification and validation of 
spacecraft using swarm technology.  This paper discusses 
the evaluation of these formal methods and the partial 
specifications of the ANTS mission that were undertaken 
using four selected methods.  We then provide an 
evaluation of the methods and outline a possible new 
integrated formal method that could be used to verify 
future NASA swarm missions.   

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: ANTS Mission Concept. 

 
2. ANTS Mission Overview 
 
The Autonomous Nano-Technology Swarm (ANTS) 
mission [3] will comprise approximately 1000 
autonomous pico-class (approximately 1kg) spacecraft 
that will search the asteroid belt for asteroids that have 
specific characteristics (Figure 1). Under present thinking, 
the swarm comprises three distinct classes: workers, 
leaders, and messengers.  Workers will carry high-end 
miniature instruments.  Leaders will be goal-oriented and 
will direct the workers.  Messengers will route 
communications between leaders, workers, and Earth.  To 
examine an asteroid, the spacecraft will have to cooperate 
with each other, since they each only have a single 
instrument on board.  Exploration activities of the swarm 
will involve a hierarchical social behavior where some 
spacecraft will have the role of directing others.  Sub-
swarms will act as teams that explore a particular asteroid 
based on the asteroid’s properties and share resources 
(instruments) between them. 

This mission will involve high levels of autonomy as 
well as autonomic properties. Artificial intelligence 
technologies such as genetic algorithms, neural nets, 
fuzzy logic and on-board planners are being investigated 
to assist the mission in maintaining high levels of 
autonomy.  Crucial to the mission will be the ability to 
modify its operations autonomously to reflect the 
changing nature of the mission, and the restrictions of 
distance and low bandwidth communications back to 
Earth. 

 
3. Approaches and Assurance 
 
As mission software becomes increasingly complex, 
testing and error discovery become more difficult.  This is 

especially true of highly parallel processes and distributed 
computing, such as swarms and distributed systems with 
autonomic properties.  Race conditions in these systems 
can rarely be found by inputting sample data and 
checking whether the results are correct.  These types of 
errors are time-based and only occur when processes send 
or receive data at particular times, or in a particular 
sequence, or after learning occurs.  To find these errors, 
the software processes involved have to be executed in all 
possible combinations of states (state space) that the 
processes could collectively be in.  Because the state 
space is exponential to the number of states, exhaustive 
testing can become impossible with a relatively small 
number of processes.  Traditionally, to get around the 
state explosion problem, testers have artificially reduced 
the number of states of the system and approximated the 
underlying software using models.   

Formal methods are proven approaches for assuring 
the correct operation of complex interacting systems [5, 8, 
9]. They are particularly useful for specifying complex 
parallel and distributed systems where more than one 
person was involved in the development. Once written, a 
formal specification can be used to prove properties of a 
system correct, check for particular types of errors (e.g., 
race conditions), and can be used as input to a model 
checker.  Verifying emergent behavior, however, is one 
area that most formal methods have not addressed to 
required levels of satisfaction. 

We have surveyed formal methods techniques to 
determine whether there exist formal methods that would 
be suitable for verifying swarm-based systems and their 
emergent behavior. A number of formal methods support 
the specification of either concurrency or algorithms [10].  
Though there are a small number of formal methods that 
have been used to specify swarm-based systems, only two 
formal approaches have been used to analyze the 
emergent behavior of swarms, according to our 
investigations. Weighted Synchronous Calculus of 
Communicating Systems (WSCCS), a process algebra, 
was used by Tofts to model social insects [13], and to 
analyze the non-linear aspects of social insects [12]. X-
Machines have been used to model cell biology [7], and 
modifications could increase the potential for specifying 
swarms. Simulation approaches are being investigated to 
determine emergent behavior. These approaches do not 
predict emergent behavior from the model, but rather 
model the emergent behavior after the fact. 

 
4. Specifications and Evaluation 
 
In the initial evaluation of specification techniques for 
swarm-based systems [11], specifications of the NASA 
ANTS mission employed Communicating Sequential 
Processes (CSP) [6], WSCCS, Unity Logic [2] and X-
Machines. Partial specifications of ANTS using the four 
methods are presented here, along with an evaluation of 



 

 

these methods and their potential for analyzing emergent 
behavior.  In each case, only a sufficient amount of the 
ANTS mission to gather enough information to evaluate 
the method for specifying swarm-based systems was 
specified.  
 
 
4.1. CSP  
 

The combination of the goals of the individual ANTS 
spacecraft should equal the goals of the mission. The 

following is the top-level CSP specification of the ANTS 
mission. 
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where m is the number of leader spacecraft, n the number 
of messenger spacecraft, and p the number of worker 
spacecraft.  The ANTS mission is initialized, with a set of 
goals given to it by the principal investigator.  Some of 
these goals are given to the leader (some of the goals may 
not be given to the leader if, for example, they are ground 
based or not applicable to the leader). The leader 
spacecraft specification consists of two processes: 
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The communication process, LEADER_COM, specifies 
the behavior of the spacecraft as it relates to 
communicating with the other spacecraft and Earth, and 
specifies a protocol between the spacecraft.  The second 
process, LEADER_INTELLIGENCE, is the specification 
of the intelligence of the leader.  This is where the 

deliberative and reactive parts of the intelligence are 
implemented, including leader goal maintenance. In 
addition to the goals, this process maintains the spacecraft 
and environment models and specifies how they are 
modified during operations. The following is a partial 
specification of LEADER_COM: 
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4.2. WSCCS 
 
To model the ANTS Leader spacecraft, WSCCS 
(Weighted Synchronous Calculus of Communicating 
Systems), a process algebra, takes into account 

• The possible states (agents) of the Leader, 
• Actions each agent-state may perform that would 

qualify them to be in those states,  and 
• The relative frequency and priority of each action.  

Agent states and a view of priority (p) and frequency (f) 
of the actions of the Leader are given in Table 1.  The 
states of the Leader can now be defined by definition 
statements such as the following. 

ngn.ProcessiRemediatioProcessing 17

 rocessingRecovery.PProcessing 16

 ProcessingDiagnosis.Processing  ù

 g.ProcessinPredictionProcessing  17

 g.ProcessinGenerationProcessing 17

cessingtorage.ProortingAndSProcesingS 17

 asoningeactive.ReReasoningR 50

ge.ReasonineliberativReasoningD

ingCommunicat

2

2

2

2

2

2

:

:

:16

:

:

:

:

:50

2

2

!

!

!

!

!

!

!

+

+

+

+

+

+

+

"

 

This statement provides that a Leader, when in a 
Communicating state, has the option (is allowed) to 
perform any action from the set given by: 

Table 1: Leader States and Actions 
 

State Action f p 
 Identity   

SendMessageWorker 50 2 
SendMessageLeader 50 2 
SendMessageError 1 1 

ReceiveMessageWorker 50 2 
ReceiveMessageLeader 50 2 

Commun-
icating 

ReceiveMessageError 1 1 
ReasoningDeliberatve 50 2 

Reasoning 
ReasoningReactive 50 2 

ProcessingSortingandStorage 17 2 
ProcessingGeneration 17 2 
ProcessingPrediction 17 2 
ProcessingDiagnosis 16 2 
ProcessingRecovery 16 2 

Processing 

ProcessingRemediation 17 2 
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and that the Communicating Leader will perform 
ReasoningDeliberatve with a probability of 25% and will 
give that action the same priority as the others. The 
second term in the statements specifies that the 
Communicating Leader will perform ReasoningReactive 
with the same 25% probability and priority of 2. The 
symbol + in this notation denotes a choice between the 
allowed actions, and the choice will be made based on the 
frequencies and priorities of each allowable action.  

The single Leader by itself shows the following 
example emergent behavior. The Communicating Leader 
will choose to transition to a Processing state with a 
probability of 50% by choosing to process by one of the 
six available processing types.  It will choose from the six 
types with equal probability. 

To study the emergent behavior of a swarm of Leaders, 
we begin by considering a swarm of only two Leader 
spacecraft, L1 and L2. Both leaders tick forward by 
performing one action per time step. Thus the two 
Leaders perform a composition of two actions, denoted 

21
2*1

kk
mm !! , on each time step. When this happens, 

the pair of leaders behave according to the rules for 
composition:  
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This gives the Leader pair their own set of relative 
frequencies and priorities.  Since there are two Leaders 
and each has three states and 14 possible actions, the pair 
of leaders has 9 possible state pairs and 196 possible 
action compositions.  The two-Leader swarm will have a 
much higher probability of having both leaders 
communicating or reasoning, rather than processing. 
Processing will be performed by the swarm, but with 
much less frequency than communicating or reasoning. 
These features can be extrapolated to a swarm of n leaders 
as follows. 

Given a swarm of n Leader Spacecraft, the n-leader 
swarm will tick forward in time by performing 
simultaneous actions – one action per leader per time step. 
Thus the n-leader swarm will perform (on each time step) 
a composition of n actions, denoted with weight 

nk

n

kk
mmm !!! *...** 21

21
. When this happens, the n-

leader swarm must still behave according to the rules for 
composition seen before.  

This gives the n-leader swarm its own set of relative 
frequencies and priorities. Since there are n Leaders and 
each has three states and 14 possible actions, the swarm 

of n leaders has n
3  possible state sets and n

14  possible 
action compositions.  There are only two possible priority 
values and four possible relative frequency values 
available.  Thus we can narrow down that each priority 
i
k  must be either 1 or 2 and each relative frequency 

i
m  

must be either 1 (if the priority is 1) or one of 16, 17 or 50 
(if the priority is 2). Thus the remaining options for 
leaders in the swarm will include communicating, 
reasoning, and processing (either by prediction or 
recovery, or otherwise).  Let 

comm
N  be the number of 

leaders in the swarm who choose to communicate (not in 
error) on a given time step.  Let 

reason
N  be the number of 

leaders in the swarm who choose to reason on that time 
step.  Let 

16processN  be the number of leaders in the swarm 
who choose to process (by prediction or recovery) on that 
time step.  Lastly, let 

17processN  be the number of leaders 
in the swarm who choose to process (by other means) on 
that time step.  Then, each action by each leader will have 
priority 2 and relative frequency 16, 17 or 50. Thus, the 
composition of their actions will have weight: 
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From this weighting, we can see that drastically higher 
frequencies exist when larger numbers of the leaders in 

the swarm choose to communicate or to engage in 
reasoning.  Much lower frequencies exist when larger 
numbers of leaders choose to undertake processing.   Thus 
the swarm will be communicating and reasoning much 

Table 2. Leader States and Transitions 
 
Q  !  ),(' != QFQ  

Start SendMessage  Commun. 
 ReceiveMessage Commun. 
 Reason Reasoning 
 Process Processing 
Commun. SendMessage  Commun. 
 ReceiveMessage Commun. 
 Reason Reasoning 
 Process Processing 
Reasoning SendMessage  Commun. 
 ReceiveMessage Commun. 
 Reason Reasoning 
 Process Processing 
Processing SendMessage  Commun. 
 ReceiveMessage Commun. 
 Reason Reasoning 
 Process Processing 
 



 

 

more often than processing, although processing will take 
place. 
 
 
4.3. Unity Logic 
 
To model the ANTS Leader spacecraft with Unity Logic, 
we consider states of the Leader.  In Unity Logic, we will 
consider the states of the Leader, and the actions taken to 
cause the Leader to be in those states, but the notation will 
appear much closer to classical logic.  Predicates will be 
defined to represent the actions that would put the Leader 
into its various states.  Those predicates then become 
statements which, if true, would mean that the Leader had 
performed an action that put itself into the corresponding 
state.  The Leader program would then be specified using 
assertions such as the following for Communication: 

 

[Communicating]ReasoningDeliberatve(Leader)[Reasoning] 

[Communicating]ProcessingGeneration(Leader)[Processing] 
 

 
4.4. X-Machines 
 
To model the ANTS Leader spacecraft as an X-Machine 
we must view the Leader as a tuple: 
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where the components of the tuple are defined as 
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Memory  is written as a tuple ),( ModelGoalsm =  where 
Goals describes the goals of the mission and Model 
describes the model of the universe maintained by the 
Leader. The initial memory is denoted by 
( )00,ModelGoals . When the goals and/or model change, 
the new tuple is denoted as ),( lModesGoalm !!=! . 
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MemoryOutputInputMemory !"!  as in the following: 
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Then QQF !"#:  is defined according to definitions 
such as in Table 2. 
 
 
5. Evaluation of Methods  
 
CSP is a process algebra and is very good at specifying 
the process protocols between and within the spacecraft,  
and at analyzing the result for race conditions.  Being able 
to evaluate a system for race conditions is particularly 
useful in swarm-based systems which are highly parallel.  
From a CSP specification, reasoning about the 
specification can be undertaken to determine race 
conditions.  The specification may also be converted into 
a model checking language and analyzed with a model 
checker. 

WSCCS provides a process algebra that takes into 
account the priorities and probabilities of actions 
performed by the leader and other ANTS spacecraft. It 
further provides a syntax and large set of rules for 
predicting and specifying the choices and behaviors of the 
Leader, as well as a congruence and syntax for 
determining if two automata are equivalent.  All of this in 
hand, WSCCS can be used to specify the ANTS 
spacecraft and to reason about, and even predict, the 
behavior of one or more spacecraft. This robustness 
affords WSCCS the greatest potential for specifying 
emergent behavior in the ANTS swarm. What it lacks 
towards that end is an ability to track the goals and model 
of the ANTS mission in memory.  This may be achieved 
by blending the WSCCS methods with the memory 
aspects of X-Machines. 

Unity Logic provides a logical syntax equivalent to 
simple Propositional Logic for reasoning about these 
predicates and the states they imply, as well as for 
defining specific mathematical, statistical, and other 
simple calculations to be performed.  However, it does 
not appear to be rich enough to allow ease of specification 
and validation of more abstract concepts such as mission 
goals.  This same simplicity, however, may make it a 
good tool for specifying and validating the actual 
Reasoning programming (as opposed to Reasoning 
process) portion of the ANTS Leader spacecraft, when the 



 

 

need arises. In short, specifying emergent behavior in the 
ANTS swarm will not be accomplished well using Unity 
Logic. 

X-Machines provide a highly executable environment 
for specifying the ANTS spacecraft. It allows for a 
memory to be kept and it allows for transitions between 
states to be seen as functions involving inputs and 
outputs. This allows us to track the actions of the ANTS 
spacecraft as well as write to memory any aspect of the 
goals and model.  This ability makes X-Machines highly 
effective for tracking and effecting changes in the goals 
and model. However, X-Machines does not provide any 
robust means for reasoning about or predicting behaviors 
of one or more spacecraft, beyond standard propositional 
logic. This will make specifying emergent behavior 
difficult.  

The following table summarizes these properties: 
 

Properties of Current Formal Methods 
Method Useful Properties and Difficulties 

CSP 

♦ Ability to model check 
♦ Case-based reasoning approach 
♦ Not able to specify algorithms and 

data manipulation 

WSCCS 

♦ Actions are given priorities and 
frequencies 

♦ Defined algebra for extrapolation of 
how the agent will choose from 
various actions 

♦ Probability used with action 
frequencies for predicting emergent 
behavior 

♦ Allows for only a single state per 
space-craft (the craft may be in 
several concurrent states based on 2 
or more sets of states) 

♦ Actions with lower priorities will not 
actually occur 

♦ There are no effective tools to aid 
calculation and interpretation of the 
emergent behavior of more than 2 
agents 

♦ No visualization capabilities exist to 
aid in the study of the emergent 
behavior  

X-
Machines 
 

♦ Ability to store Goals and Model in 
memory (to maintain and update the 
goals of the mission and the model 
of the universe with each action 
taken) 

♦ Uses a combination of current goals, 
model and current state to trigger an 
appropriate transition (this makes it 
adaptive to the current situation) 

♦ Transition functions are very 

programmable 
♦ Concepts of Input and Output can be 

used for verification and storage of 
the results of agent actions or 
processes 

♦ Has few predictive qualities for 
emergent behavior of multiple 
agents. 

Unity 
Logic 

♦ Actions are seen as predicates (this 
allows for a more logic-based 
structure that can be easily 
programmed and allows the agent to 
be self-aware and track its own 
actions) 

♦ Proof of correctness 
♦ Has no sense of how or why an agent 

would choose to perform a given 
action and thus no ability to predict 
emergent behavior 

♦ Needs a predictive quality for the 
agent’s actions over time 

 
6. An Integrated Swarm Formal Method 
 

An effective formal method for use in the ANTS 
mission must be able to predict the emergent behavior of 
1000 agents operating as a swarm, as well as the behavior 
of the individual agents.  Crucial to the mission will be 
autonomic properties and the ability to modify operations 
autonomously to reflect the changing nature of the 
mission.  For this, the formal specification will need to be 
able to track the goals of the mission as they change and 
to modify the model of the universe as new data comes in. 
The formal specification will also need to allow for 
specification of the decision-making process to aid in the 
decision of which instruments will be needed, at what 
location, with what goals, etc. 

Once written, the formal specification must be able to 
be used to prove properties of the system, check for 
particular types of errors, as well as be used as input to a 
model checker.  The formal method must also be able to 
track the models of the leaders and it must allow for 
decisions to be made as to when the data collected have 
met the goals.  

To accomplish all of this, integrating the above 
methods seems to be the best approach for verifying 
cooperating swarm-based systems.  Integrating the 
memory and transition function aspects of X-Machines 
with the priority and probability aspects of WSCCS and 
other methods may produce a specification method that 
will allow all the necessary aspects for specifying 
emergent behavior in the ANTS mission and other 
swarm-based systems.   

The merging of these formal methods is currently being 
performed.  The approach being taken is to use a 



 

 

conserving integration [12] of the methods.  In this type 
of formal methods integration, the base formalisms of the 
methods are maintained and relationships between the 
formalisms are developed to reflect the new formal 
method.  This approach will preserve the strength of the 
underlying methods and allow a seamless specification of 
the ANTS mission, and the development of support tools 
using existing semantics of the methods.   
 
7. Conclusion 
 
Future NASA missions will increasingly use cooperative 
intelligent swarm-based systems to conduct new science 
and perform unmanned exploration.  These new missions 
will be highly autonomous and will be out of touch with 
NASA ground stations for extended periods of time.  In 
addition, due to the nature of swarm-based systems, they 
may be designed with, or unintentionally exhibit, 
emergent behaviors.  These missions, consequently, will 
pose an even greater challenge for verification than has 
been the case in past missions.   

To verify NASA swarm-based (autonomous) missions, 
an effective formal method must be able to predict the 
emergent behavior of 1000 agents functioning as a 
swarm, as well as the behavior of individual agents. 
Crucial to the mission will be the ability to modify 
operations autonomously to reflect the changing goals and 
data gathering strategies of the mission.   

We have identified several important attributes needed 
in a formal approach for verifying swarm-based systems 
and potential formal methods that support these attributes.  
From this potential list we have undertaken sample formal 
specifications of part of the NASA ANTS mission using 
four of these methods and have determined that they each 
have appropriate attributes, but no single method alone is 
sufficient.  We are currently integrating these methods to 
develop a new formal method for swarm-based systems 
and will test this new formal method through a formal 
specification of the NASA ANTS mission.   
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